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Preface

The purpose of this study was to develop and to demonstrate a

control theory, incorporating the feedback of fractional order

derivatives of the structural response, for the control of undamped and

viscoelastically damped structures. The control theory was developed

from the finite element formulation of the structure, and the use of

fractional order state feedback provided control authority equal to

current structural control schemes with the use of fewer sensors.

I would like to express my deepest gratitude to Lieutenant Colonel

Ronald Bagley, my thesis adviser, for his guidance and support

throughout this study. I am grateful for his enthusiasm and his

confidence in my work, without him this study would not have been

possible. I would also like to thank Dr. Brad Liebst and Captain Greg

Warhola for their guidance and assistance throughout this research

effort. I like to thank my fellow classmates in GA-89D and GA-90M for

their friendship and support. Finally, I would like to express my

thanks to my mother for the love, guidance, and support she has given me

over the years.

In conclusion, I would like to dedicate this work to my father, who

continued to offer me encour.6ewent while fighting for his life against

cancer. May he rest in peace.

David L. Yang
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Abstract

The purpose of this studY is to demonstrate the analysis leading to

the development of the fractional order state feedback control theory

for structural control of both undamped and viscoelastically-damped

structures. It is shown herein that there exists a relation between the

traditional state vector that includes structural displacements and

velocities, and the fractional state vector which includes fractional

derivatives of structural responses. This relation permits the

modification of linear quadratic regulator theory to include the

application of fractional order states in the feedback control. The

application of this theory leads to an alternative form of an observer.
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FRACTIONAL ORDER STATE FEEDBACK CONTROL FOR UNDAMPED AND

VISCOELASTICALLY-DAMPED STRUCTURES

I. Introduction

Structural control of large space structures has become of interest

in recent years due to the application of these structures in areas such

as the NASA space station and the Strategic Defense Initiative. The

large size and low weight of these structures result in large number of

closely spaced, low frequency vibration modes, which require structural

control to maintain system stability and performance requirements.

Passive damping systems such as damping pads and sophisticated shock

absorbers provide only a partial solution to the problem due to their

limited control action at low frequencies. The incorporation of active

structural control systems with passive damping devices shows potential

in improving overall system performance considerably.

The current research effort began with an interest to introduce

active control to structures that are viscoelastically damped, in

searching for improved system response. The objective of this thesis is

to demonstrate the analysis leading to the development of a fractional

order state feedback control law, for structures incorporating both

passive damping through viscoelastic materials which are modeled by a

fractional derivative stress-strain relation and active damping by

applied control forces. To achieve this, quadratic optimal control

1



theory is modified. Specifically, linear quadratic regulator theory is

modified to include fractional derivatives in the state vector. It is

shown herein that there exists a relation between the traditional state

vector and the fractional order state vector which pormits the

incorporation of fractional order states in the feedback control law.

The thesis first reviews the properties of the quadratic optimal

control theory and the fractional derivative in the formulation of a

viscoelastic constitutive law. The development of the fractional order

state feedback control theory is presented in Chapter III for both

undamped and viscoelastically-damped structures. Two example problems

in Chapter IV illustrate the application of this control theory and

demonstrate the solution technique.
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II. Brief Overviews of Optimal Control Theory and Fractional Derivatives

Before proceeding with the development of the fractional order

state feedback control theory, it is appropriate to introduce the

properties of the optimal control theory and fractional derivatives

relevant to the following control theory development. Of particular

interest are the linear quadratic regulator and the basic fractional

derivative viscoelastic constitutive relation. Section 2.1 provides a

brief overview on the development of the linear quadratic regular

control theory. Section 2.2 provides a general description of the

fractional calculus and the development of the fractional derivative

constitutive relation for viscoelastic materials.

2.1 Optimal Control Systems Based on Quadratic Performance Index

The concept of control system optimization compromises the

selection of a performance index and a control law which yields the

optimal control system within the limits imposed by system physical

constraints. A performance index is a function whose values indicates

how well the actual system performance matches the desired system

performance. In many cases, system behavior is optimized by choosing

the control vector in such a way that the performance index is minimized

(or maximized).

In many practical control systems, it is desired to minimize a

measure of the difference between the actual state and the desired

state, and to minimize the energy required for the control action. For

a given linear system represented by

3



= A- + Bm (1)

where

state vector (n-dimensional real vector)

= control vector (r-dimensional real vector)

A = n x n matrix

B = n x r matrix

the associated quadratic performance index of the system over the time

interval 0 : t t f may be written as (1:753)

tf t'
= - (2)

j f [~t) x~t Q[C(t) - x(t)1 dt + fuT()utd(2
0 0

where

C(t) = the desired state

x(t) = the actual state

u(t) = the control vector

Q = a positive-definite (or a positive-semidefinite) matrix

R a a positive-definite matrix

The Lagrange multiplier, X, is a positive constant indicating the weight

of control energy with respect to the minimizing errors, and the time

interval 0 C t C tr is either finite or infinite.
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Finding the optimal control law for tne system subject to the

performance index given by Eq (2) has a practical significance that the

resulting system compromises between minimizing the integral error and

minimizing the control energy. For the case where t,= m and the

desired final state is the origin, or = 0, the quadratic performance

index given by Eq (2) can be expressed as

J = i[x(t) TQx(t) + uT (t)Ru(t)]dt (3)

0

where X has been included in the positive definite matrix R. This type

of control problem is often referred to as a "linear quadratic regular

problem" since the final state response is desired to be zero (1:126).

In designing optimal control systems based on the quadratic

performance index shown in Eq (3), one is interested in choosing a

control vector, u(t), so that the performance index is minimized. The

necessary conditions for an optimal solution of the regulator problem

may be obtained by using the calculus of variations which may involve

the concept of a Hailtonian (2:180-181). Once the initial and final

state conditions have been identified by the state and costate

equations, the optimal control law may be determined by solving the

two-point boundary-value-problem (2:189-190). The optimal control for

the regulator problem is

= -R 1 BSX (4)

0 where S is the solution of the algebraic matrix Riccati equation:

5



0 = AT8 + SA - SBR'IBIS + Q (5)

Defining the optimal gain matrix as

G = R-IBT8 (6)

the optimal control can be written as

= -G (7)

and the state equation can be expressed as

= A- - BGj (8)

2.2 Fractional Derivatives and Its Application to Viscoelastic Materials

A fractional calculus, in which fractional order derivatives and

integrals are defined and studied, is not a very new concept. Although

the idea of fractional calculus has been in existence since the late

1600's, the use of fractional calculus has been few as compared to the

classical calculus of integer orders. An article written by Ross (3)

provides an interesting overview on the historical development of the

basic concepts of fractional calculus.

A fractional derivative is a linear operation that generalizes the

order of differentiation to fractional values. It is the inverse

operation of fractional integration attributed to Riemann and Liouville

6



(4). The fractional derivative is defined as

t

DP'fx(t)1 d [( x()) dt (9)
"--1 dt (t-)

for 0 < a < 1. The fractional derivative operator has the property in

the Laplace transform domain that

2[D[x(t)]] = S-w[x(t)] (10)

where

2[x(t)] = f x(t) e" t dt (11)

0

A similar relationship exists for the fractional derivative

operator in the Fourier transform domain

2DFu[x(t)]] = (iW))a.3[x(t)j (12)

where

U[x(t)I a f x(t) e i(4)t dt (13)

0

In fact, the fractional derivative satisfies many of the same

properties as the integer derivative, particularly linearity and the

composition property

7



D(ay(t) + bx(t)] z aDefy(t)] + bDa[x(t)] (14)

for a and b are constants, and

De[DP[x(t)]] DK+O[x(t)] (15)

The development of the fractional derivative stress-strain

constitutive model for viscoelastic materials has its foundation in the

early observations made by Nutting and Gemant (6,7,8). Nutting's

observations suggested that the stress relaxation property could be

modeled by fractional powers of time, while Gemant's observations

suggested that the frequency dependent properties of viscoelastic

materials could also be modeled by fractional differentials of time.

The simultaneous modeling of both relaxation and frequency dependent

characteristics of viscoelastic materials, using fractional time

differentials, was later proposed by Scott-Blair in 1950's (9).

Meanwhile, the use of fractional derivatives was suggested by Caputo for

modeling the viscoelastic behavior of geological strata (10,11). He and

Minard also showed through experimental data that the fractional

derivatives constitutive relationship could be used for some glasses and

metals (12). Bagley proposed the use of fractional derivatives in the

finite element analysis of viscoelastically damped structures (5). In

recent years, Bagley and Torvik have jointly published several papers

demonstrating the application of fractional derivatives in

viscoelasticity and structural dynamics (13-16). They have also shown

that the fractional order models are consistent with thermodynamic

8



constraints (17) and these models have their foundation in molecular

theories that predict the macroscopic behavior of viscoelastic materials

(18).

The general form of the fractional derivative viscoelastic model

put forward by Bagley and Torvik is (14)

N N
7(t) + E b D [C(t)] = E°C(t) + E E Dn[((t)] (16)

mel nel

where the time-dependent stress fields are related to the time-dependent

strain fields through series of fractional derivatives. For many

viscoelastic materials, the stress-strain relation can be modeled by

retaining only the first fractional derivative term in each series in Eq

(16) and the resulting model is

o(t) + bDp[a(t)] = Eo (t) + EIDa[C(t)] (17)

The Second Law of Thermodynamics requires that (17)

E k0 E1  bE0

EV > 0 P =(18)

b>0

These constraints ensure that energy dissipation rate and stored strain

energy are positive.

The stress-strain relation expressed in the Laplace domain is

9



a(s) Eo + E8 (19)
C(s) 1 + bl9

The result is a viscoelastic model with four parameters: b, E0, E,, and

x. This model has been shown to be very accurate over several decades

of frequency for approximately 130 materials (15,16). For some

applications where the required frequency range is limited, a three

parameter viscoelastic model, where b = 0, is sufficient (21:129). The

three parameter model is defined as

s ( = E + ES a  (20)

and this is the model that will be used in this work.

10



1II. Fractional Order State Feedback Control Theory

The development of the fractional order state feedback control

stems from the interest in examining the effect of feedback in

controlling viscoelastically damped structures. Bagley and Calico have

shown that fractional order state equations can be developed where the

state vector includes fractional order time derivatives of structure

notion (19). Their work also suggested possible improvement in system

performance by feeding back fractional time derivatives of system

response. The fractional order state equations for a general system

prescribed by Bagley and Calico is (19:493)

D a = Ay - BDG (21)

for x is the fractional order state vector and G is the matrix of

effective gain coefficients.

In order to apply fractional order derivatives feedback in

classical structural control, it is necessary to develop a control law

incorporating the fractional order states. The development of the

theory will begin with the formulation of the fractional order equations

of notion, which is an extension of the traditional equations of notion

derive from the finite element formulation of the structure of interest.

A special solution technique is then demonstrated for determining the

the eigenstructure of the fractional order equations of notion which

includes both integer order and fractional order time derivatives of

structural displacements. The eigenvectors of the system are then used

to develop the special traditional-state/fractional-state transformation

11



relation, and the result of this transformation is then applied to the

development of the control law which incorporates the feedback of

fractional order states.

In the application of optimal quadratic control theory for active

structural control, more specifically for the linear quadratic regulator

problem, it has been shown that the quadratic control theory produces

optimal control as linear feedback of the state vector (20:129). The

state equations for the structure can be written as

= - BOx (8)

where I is the state vector that includes only structural displacements

and integer order time derivatives of structural displacements, and 0 is

the optimal gain matrix. It will be shown herein that there exists a

relation between the traditional state vector of integer order and the

fractional order state vector given by

a = @(22)

where 0 is as a state transformation matrix which can be determined

from the eigenstructure of the equations of motion posed in an expanded

format.

Consider the finite element equations of motion for a structure with

N degrees of freedom

[Ml{w(t)) + [K]{w(t)) a {F(t)) (23)

12



where [NJ and [K] are the mass and stiffness matrices of the finite

element model, and {F(t)} is the forcing function. In order to develop

the state transformation matrix, 0, it is necessary to first pose Eq

(23) as a set of fractional order differential equations and then

determine the eigenstructure associated with the fractional order

equations of motion. Applying the composition property of the

fractional derivative such that

Da[l fw(t)jI a Da+O{w(t)) (24)

and Eq (23) can be posed as

Da[M][D2-a + D2 -2  + D2-30 + - +D](w(t))

NI[D2 + D + D + - + DIwmt))

+ [KID 0{w(t)) = {F(t)) (25)

Eq (25) represents the fractional order equations of motion for the

system defined in Eq (23). Here a is chosen to be a fraction of the

form 1/n where n is an integer. This is to ensure that velocities will

appear in the fractional order state equations and thus allows one to

solve the initial value problem where the initial velocity is specified.

For systems with zero initial condition, this restriction on a is not

required.

The eigenstructure of the fractional order equations of motion, Eq

(25), can not be solved using traditional eigenvalue problem solution

method because of the inclusion of fractional derivatives. The special

solution technique presented here for solving Eq (25) is an extension of

13



the method presented by Foss for determining the solution of an N

degree-of-freedom (DOF) viscously damped structure (29:361)

[M](q(t)) + [CJ{q(t)l + [K](q(t)) = {F(t)) (26)

where the damping matrix, [C], is not a linear combination of the mass

and stiffness matrices of the system. Foss proposed the use of a set of

auxiliary variables and the conversion of a Lagrangian set of N second

order differential equations into an equivalent set of 2-N first order

differential equations known as Hamilton's canonical equations. This

leads to the following equivalent equations of motion:

( + y(t)) + Y(t) = (Y(t)) (27)

where

IN] [ [N C] (28)

[KI - [] 0 (29)

.. L[0) [K]

{y(t)) = (  (30)
( q(t))j

(Y(t)) 0 (31)
({F(tl1

14



The lower half of the partitioned matrix equations, Eq (27), is the

equations of motion of the system in Eq (26) and the upper half of the

matrix equations is satisfied identically. The formulation of Eq (27)

has the advantage that its solution can be determined using traditional

eigenvalue problem solution method.

To determine the eigenstructure of Eq (25), one can adopt the

method presented by Bagley and pose the fractional order equations of

motion in terms of two real, square, symmetric matrices in the

following format (14:744)

D[Milf(t) + [Ki]w(t)) =fF(t)I (32)

(0]) (0] -- (o) [)'

[01 [0] - [N] [01

[MJ i (33)

(01 [MI (0] (01

(I (01 10 [1(011

(01 [01 01 -I) 0

[01 [01 - -(M) [01 [01

[1K 1 (34)

(01 -[N (01 [0) (01

-[N [01 (0] (01 [01

[01 (01 - (0) [0) (K]

15



D(2 ' a ) (w(t))

D (2-a){w(t)l

{ z(t)I = (35)

{w(t)}

{w(t)I

(0)

(0)

F(t)}= (36)

(o

(9(t)).

This revised form is referred to as the expanded equations of motion

where [N and [K] are the pseudo-mass and pseudo-stiffness matrices

respectively (15:922). Note that the lowest set of partitioned matrix

equation is the equations of motion given in Eq (25), and that all of

the upper sets are satisfied identically. The order of the expanded

equations of motion is 2.N-n.

Setting {F(t)) = {0) yields the homogeneous form of Eq (32) and the

expanded eigenvalues and eigenvectors for the system may now be solved

to satisfy the equation

X [i(NJ(# + [KlJ{ ) = 10) (37)

The solutions to this equation can be computed using one of several

techniques currently available (22). The eigenvalues appear in complex

16



conjugate pairs and there are N-n pairs of eigenvalues for the system.

The eigenvalues may be mapped onto the Riemann surface for the function,

1/n
X = Z , consisting of n Riemann sheets (23:902). N pairs of complex

conjugate eigenvalues usually appear to each sheet. The eigenvalues on

the principal sheet of the Riemann surface, which is the first upper

sheet of the n sheets present, represent poles in the system transfer

function and they produce sinusoidal motion of the structure at the

resonant frequencies of the system. The eigenvectors associated with

the eigenvalues on the principal sheet describe the mode shapes of the

structure at the modal frequencies. The eigenvalues on other sheets of

the Riemann surface represent poles in the system transfer function

which produce a monotonically decreasing response of the structure.

This monotonically decreasing motion describes the creep and relaxation

response of the system. It will be shown in Chapter IV of this thesis

that the system response is strongly influenced by the residues of the

poles on the principal sheet of the Riemann surface, and one may

describe the general response of the system with very good accuracy over

an intermediate range of time using only the eigenvalues and

eigenvectors associated with those poles on the principal sheet. In the

following analysis, only the eigenvalues and eigenvectors associated

with the poles on the principal sheet of the Riemann surface are

retained for the formulation of the state transformation matrix.

Recalling the expansion theorem in structure modal analysis

(24:283) where the system response may be described as a superposition

of the normal modes of the system multiplied by corresponding

time-dependent generalized coordinates and be written in the form

17



{q} a (u]fri (38)

for

(qj = a column vector of the generalized system response

[u) = the modal matrix consisting of the modal vectors arranged in

a matrix

{fr) = a column vector of the modal coordinates of the system

Applying the theorem to the expanded system, one may now pose the system

response of the structure in the form

(w(t)} = [O]{rl (39)

where

D(2 -a) {w(t))

D(2- 2a)NMD'Z D 2a fw(t))

{w(t)} = (35)
V {w(t))

fw(t)l

{w(t)

18



172

r12 (41)

• TiN

Notice the expanded response (w(t)) includes nodal displacements,

velocities, and the fractional derivatives of the nodal displacements

for all N degrees of freedom of the finite element model. The nodal

matrix, [$1, consists of the conjugate pairs of modal vectors, (0} and

{o j, associated with the conjugate eigenvalues, X and )j, on the

principal sheet of the Riemann surface.

5 From Eq (39) one may extract the necesaary information to construct

the traditional state vector and the fractional state vector for the

system. The traditional state vector may be posed in a form similar to

Eq (39)

= A]( }  (42)

where

D(wIt)MI (43)
= Dflwlt)}19

19



[ a matrix consists of row vectors in Eq (40) that are

associated with the states defined in Eq (43)

Similarly the fractional state vector may be written as

= [* ]{r} (44)

where

Yl

Y2

Y3

y 2 N-I

Y2N j

[OB] : a matrix consists of row vectors in Eq (40) that are

associated with the states defined in Eq (45)

The fractional state vector in Eq (45) is a special subset of the state

vector of the expanded equations of motion in Eq (35) and each state of

the fractional state vector represents a state of interest in Eq (35).

The fractional state vector in Eq (45) has the same dimension as the

traditional state vector in Eq (43) and it includes a total of 2N

fractional and integer states. The states of the fractional state

vector may be of any integer or fractional order states taken from one

structural node or from a combination of several different nodes.

20



From Eq (44), one may define {q} as

(il = [#B] IX (46)

Substitute Eq (46) into Eq (42) yields

= *A OB] -'Y (47)

Define the state transformation matrix, 0, as

Z#A ] t (48)

and Eq (47) can be written as

~= 0! (49)

Eq (49) illustrates the relation between the traditional state

vector and the fractional state vector in a system, and the state

transformation matrix captures the essence of this important relation

(19). The task at hand is to utilize the traditional-state/fractional-

state relation just presented as the foundation for developing

fractional order state feedback control law for both undamped and

viscoelastically damped structures. The development of the theory will

be presented in the following sections.
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3.1 Fractional Order State Feedback Control of Undamped Structures

In this section, the fractional order state feedback control law

will be developed for the control of undamped structures. The optimal

quadratic regulator control theory serves as the starting point for the

development of the new control law. The traditional-state/fractional-

state relation is then incorporated into the theory for the formulation

of the factional order state feedback control law.

Consider the equations of motion of an N degree of freedom

structure under active control

[M]{w(t)} + [K]{w(t)} = [DJu(t)1 (50)

The equations of motion for the system are similar to Eq (23), except

for the forcing function which has been replaced by the product of a

matrix, (D], and a vector, {u(t)}. The matrix,[D], describes the

location and orientation of the actuators, and the vector, ju(t)),

represents the actuator force. The product of (D] and {u(t)} represents

the control force applied to the structure.

The system in Eq (44) may be expressed in state model form

= A+B (1)

where

A X ( w(t)) (51)

(w(t)}

22



= { {wt)) }(52)
(w(t)}

10[o [1]]

A = [M]-1KJ [0] 1 (53)

B = 1 1 (54)

and [0] is a zero matrix and [I] is an identity matrix.

Recalling from optimal quadratic regulator control that the optimal

for the system is a linear feedback of the state vector

= - (7)

for G is the optimal gain matrix for the system derived from the

solution of the Riccati equation. Introducing the optimal control into

the system and the state equations may be written as

AN - D x (8)

Partition the gain matrix G into two equal size matrices, G ad Ga,

such that

0 = 2G1G2 ]  (55)

and incorporate the gains into the finite element model of the structure

to obtain
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[MJ(w(t)I + (D[G2 I{w(t) + ([KJ + [DJ[G I]){w(t)I = (0 (56)

Note that the feedback control introduces control damping and control

stiffness to the structure, as evidenced by the inclusion of [D]HO 2] and

[D][G I] in Eq (56).

To determine the modal matrix and the state transformation matrix

for the structure under control, first pose the equations of motion, Eq

(56), in the fractional format

D[M][D2-a + D2-2a + D2-3a + .... + DO] (w(t))

[MI[D2-a + D2 -2U + D2 -3 a + DI(w(t)}

. D[D][G2 [DI-a + D" + D- + + Do I w(t)}

_ [D](Gz][D'-a + Dl"2a + D1 - 3 0 + .... + Ia(w(t)I

+ ((K] + [D][G 1])D°{w(t)) = (0) (57)

The eigenvalues and eigenvectors of the system in Eq (57) may now be

solved using the solution technique of the expanded equations of motion

presented in Eq (32)-Eq (36). For the equations of motion are now

written as

DU[M1fw(t)} [K]w(t)i) = {(t)) (32)
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where

[01 [01 [01 [M

[01 [01 [M]

[]I= 21[DI[!  (58)

01 [M [D][G2 ] [0] [01

[I] (01 [D][G 2  .. 0] [01

[01 [01 [0 -[M] [01

[01 [01 -[M] [01 [01

[K !M! -[D][G 2 ]  (59)

[01 -[M] -[D][G 21 [01 [01 [01

-[MI [01 ..-. [DI[O 21 [01 [01 [01

[0] [01 [01 [01 [KI+[DI[G 1 ]

and {w(t)) is the state vector defined in Eq (35) and {F(t)) is a zero

vector for this case. Following the procedure identified in Eq (39)-Eq

(41), the modal matrix, [0], may be determined for the expanded response

of the structure under feedback control. Furthermore the state

transformation matrix ,#, may be formulated following the steps

identified in Eq (42)- Eq (48). Applying the state transformation

relation,Eq (49), to the optimal feedback control, Eq (8), and

=Ax - DGft (60)

This is the control law for active structural control incorporating

the feedback of fractional order derivatives of the structure's
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response. The use of fractional state feedback control permits one to

maintain equivalent control authority over the system as the traditional

state feedback control with the use of fewer sensors (additional

control hardware and circuitries may be required to support the actual

operation). The additional information provided by the fractional

derivatives of the structural response and the use of the state

transformation matrix allows one to observe the notion at all structural

nodes of interest, even though only limited sensors are actually used to

monitor the system.

To further expand the theory, substitute the state transformation

relation into Eq (60) and the control may now be written as

= AOI - DOfz (61)

Multiply both sides of Eq (61) by and

z = ' Ax - 0 'Oz (62)

Redefine the elements of Eq (62) as follows

A--= -'A# (63)

B* * 'B (64)

G • GO (65)

and Eq (62) may be written as

A* - (66)
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Eq (66) is the fractional order state equations with optimal feedback

control. Application of this control law will make possible the

controlling of fractional derivatives of the structural response.

3.2 Fractional Order State Feedback Control of Viscoelastically Damped

Structures

The next step in the study is to formulate the fractional order

state feedback control law for the control of structures that are

viscoelastically damped. The development process follows closely to the

procedure used in the development of the fractional order state feedback

control law for the control of undamped structures. Minor modification

was made in the formulation of the finite element model of the

viscoelastically damped structures which included the fractional

derivative modeling of the viscoelastic damping material.

Consider the three parameter fractional derivative model for a

viscoelastic material undergoing uniform, uniaxial deformation

o(t) = (o+ KDO)(t) (67)

where Eo,g 1, and P are the material parameters. Applying this model to

the formulation of the finite element equations of motion for a

viscoelastically damped structure under control and the equations take

the form

[MI ((t) [K+ IV(Dw(t) + (K [ (w(t)) = [D]{u(t)) (68)

27



where

[Kv ] = visco-stiffness matrix

[KE] = elastic-stiffness matrix

In general the visco-stiffness matrix is not a linear combination of the

mass and elastic-stiffness matrices, and the equations of motion, Eq

(68), can not be transformed into the traditional first order state

equations, Eq (1). In order to apply optimal feedback control to this

viscoelastically damped structure, it is necessary to develop an

equivalent damping matrix and an equivalent stiffness matrix for the

system, thus the equations of notion may then be posed in the familiar

form

[N]{v(t)l + [C*]{w(t)) + [K*j{w(t)I = [D]ju(t)I (69)

and Eq (69) could lead to the formulation of the necessary state

equations for structural control.

To develop the equivalent damping and stiffness matrices, one must

first solve for the resonance response of the viscoelastically damped

structure. Posing the equations of notion in the fractional format
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DY[MID - 7 + D 2 27 + D 2 -3 7 + + D 0 w(t))

t-[N][D 2- + D 227 + D2-37 + + D ]fw(t)}

+ D Y[K v ] [DP + + 3 + + Do (w(t))

- (Kv [DP-' + DP-27 + DP'37 + .... + D ({w(t)

+ [KEID°(w(t)) = (0) (70)

where 7 = 1/. and a is equal to the denominator of P. The modal

displacements, modal velocities, and modal accelerations of the

structure can then be determined by solving Eq (70) using the solution

method of the expanded equations of motion presented in Eq (32)-Eq (36).

The expanded equations of motion for Eq (70) are written as

D'[N(MW(t)1 + [K]{(t)} = {0) (71)

where

[01 [01 --- -- --.01 -I

(01 (01 *- (I]

ni] = ! I I I I I [Kv] (72)

(01 [N) IRV) 10o [101

N) [01 -(K v  --- (01 [01
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(01 [0] . . [01 -[M] [0

[01 (0 -[M] [0 [0

(KJ = -[Kv] (73)

(01 -[IN] [Kv] [n] [0] [01

-[N] (01 -[Kv 1 [0] 0] [0]

[01 [01 .. [0] (0] [KE]

and (w(t)) is the state vector defined in Eq (35). Once the expanded

eigenvalues and eigenvectors are determined by solving Eq (71), one may

proceed to establish the modal matrix, [4], for the uncontrolled system

as described in Eq (39)-Eq (41) and the modal displacements, velocities,

and accelerations can be extracted from the modal matrix and the

expanded eigenvalues on the principal sheet of the Riemann surface.

Given that the equivalent damping and stiffness matrices must

generate the same structural response as the original system, one may

solve for the matrices provided that the resonant structural response of

the original system is known. The homogeneous equations of motion of the

equivalent system may be written as

(MID'(w(t)) + (C*]D{w(t)} + [K*]Iw(t)I z (0) (74)

Applying the expansion theorem for structural modal analysis (24:283) to

Eq (74) and

MJ[*1(q) + [C*][#V){(} + [K*]#d]{v1 2 (0) (75)

Further simplification produces
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[1)[(] + [c*][O V] + [K*][O d ) = (0} (76)

where [Oal, [0.], and [d I are the modal acceleration, velocity, and

displacement matrices respectively. These matrices consist of the

elements of the modal matrix associated with the known structural nodal

acceleration, velocity, and displacement. Since the elements of the

modal matrix are complex, Eq (76) may be redefined as two equations

[M]Re[aI + [C*Re[, I + [K*]Re[#d] - {01 (77)

[MI([O I + [C* ]Im(] + [K*In[m(d I = (0) (78)

where Re[,], Re[,VI, and Re[# ] represent the real parts and Im[*I,

W VI,v and In[#. ] represent the imaginary parts of [a]1, [#VI and [*d

respectively. Eq (77) and Eq (78) may now be solved for (C*] and [K*I

where

(C*] -IM(Be(.I - In[# II[d]i -Re[*d ]J
• [Re[OVIlI[OVIl ([d]" '.Re[#d 1/"' (79)

a - I.m. + (C*J.[Im(,l]) Im(O1d (80)

After the equivalent damping and stiffness matrices have been

determined for the system, the state equations for the equivalent system,

Eq (69), can be developed as
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IA + BM (81)

where

A = (I [M].1[* 1 (82)

B = 1  1 (83)

The optimal gain matrix, G, for feedback control can be determined in

the same manner as described in Section 2.1. Incorporating the gain

matrix into the system model, and the finite element model of the

controlled viscoelastically damped structure takes the form

[M]iw(t)) + ([C*] + [D][G ]){w(t))

+ ([K*] + [DJ[t]1){w(t)) = t0 (84)

To determine the state transformation matrix for the system, one

should first pose Eq (84) in the fractional format

em []D2-a + D 2-2a + D 2- 3 +.__ + DO](w(t)I

-[MI 2-a 2D-2U 2D-3a + ... w(t)l

+ D([C*J + [D]( 2J) [D"-a + D -2  + ...+ + DO]{w(t)}I

(C*] + [D)[ 2 J) [D"+ D[K2 a + D °+ t-- + D ](w(t)I

+ ([K'] + (DJHG 1 )DD(w(t)1 z 401 (57)
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The modal transformation matrix may be formulated by solving the

fractional order equations of motion in Eq (85), using the solution

method of expanded equations of motion in the manner described in Eq

(32)-Eq (36). The expanded equations of motion for Eq (85) are

DU[M]lW(t) + [K]{v(t)} (01 (86)

where

'[0] [0] . ..... [01 [NJ

[01 (01 . .. [ IN

[ ]= (C*]+[D][G2] (87)

[0] [I [C*] [D](GI [01 [01

[M] (0] --- [C*]+[D][( 2] [0] [01

[0] (01 (01 -IM] [01

[01 [01[ (0]

[1= -I -[C*]-[D][G 2 (88)

[01 -M0 .[C*]-[D][G 1 (01 (01 [0]

-[M] [01 -[C*]-[D][; .... [0] [01 [01

01 (0] - . [01 [01 [K*1+[D][G1I

Following the procedure identified in Eq (39)-Eq (48), the state

transformation matrix, #, can be determined from the system modal

matrix, and the control law for the feedback of fractional order states

may be written as
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= X - Bc (89)

The control law of Eq (89) for the control of viscoelastically damped

structures remains unchanged from the control law for the control of

undamped structures, only the values of the optimal gain matrix and the

state transformation are different.

34



IV. Numerical Approximation of D (e zt
]

The purpose of this section is to develop numerical approximation

of the fractional derivative of the complex exponential function

F(t) = Da[e Zt  (90)

for 0 < a < 1 and s is a complex number. The numerical approximation of

Eq (90) provides the foundation for the investigation of general

behavior of structures that are viscoelastically damped and structures

that are controlled using fractional order state feedback control

theory. It can be shown herein that the behavior of the system is

strongly influenced by the poles on the principal sheet of the Riemann

surface and the residues of these poles provide good approximation for

the general system response.

In this section two numerical approximation expressions for the

fractional derivative of the complex exponential function are developed.

These expressions are used to approximate the short range and

intermediate range behavior of the function in Eq (90). The expressions

for the errors associated with these approximations are also developed

in the process. Finally these approximations are used to generate

estimations for the fractional derivative of the generalized sinusoidal

function

G(t) Da[e + e (91)
t
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zt zt
where e is the complex conjugate of e . Recalling from vibration

analysis (24:10) that the general response of an underdamped system is

X(t) = A1ezt + A2ezt  (92)

where

and

3 = (-C + (1 - C2 ) 11 2  (94a)

= (-C - i(1 - C 2)1 2 ) (94b)

where C is the damping ratio of the system. 6)n and Wd are the natural

frequency of the undamped system and the resonant frequency of the

damped system respectively. Thus Eq (91) can provide a general

description of the fractional derivatives of the response of an

underdamped structural mode.

Before proceeding with the development of the approximation for the

fractional derivative of the complex exponential function, it is useful

to pose the exponential function in terms of the Maclaurin series
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i0

n 2! +
nmOo

The fractional derivative of the function is

Dta[eZt] - X D 3 (zt )  (6
n[ 1 (96)

neO

Taking the Laplace transform of Eq (96) and the fractional derivative of

the complex exponential function is seen to be

2[D a e zt I = 8 . (Zt)n

= o ( 8-n+ 1) (97)

which can be simplified to be

2[.a[oJ ( 1 (98)
n=O

The last step in calculating the derivative in Eq (90) is to calculate the

inverse Laplace transform of Eq (98)
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DI e " I z 2
[O 8

- ( 5-(99)
n=O

and

a1(a + 1) (100)

Let a = n - c in Eq (100) and apply the inverse transform to Eq (99)

then

0

DaO zt z In t (n -a ) (1)te = r(n-as+)

n=O

Eq (101) is the fractional derivative of a complex exponential function.

Express Eq (101) in term of its Nth partial sum and its remainder

D[ezt] a zn  t(n-0) t(n-a)
t (n - a + z n r(n - a + 1)

n=O n&NM1

where the first part of Eq (102) is the Nth partial sum of the series

and the second pert of the equation is the remainder of the series after

term N.

Redefine Eq (102) in terms of dimensionless time, 8(t), where

8(t) Xz t (103)
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Eq (102) may then be written as

DN~~~) W 
9( 9 )+ a n (104- a + r(n -a + 1) (104)

n = O u N + 1

The general approximation of the fractional derivative of the complex

exponential function can be expressed as the Nth partial sun of the

series

t  z r n - a 1)

nuO
N 

(n-00N

n rl-W+ 11 (105)
n=O

and the remainder of the series is the error, E., of the approximation

EN n  t(n)
S z r n - + 1)

6) o n (-a)(106)

n r n - a + T )11 

6

= i 8 n  
( n - )

Notice that the error function E increases without bound as 8(t)

increases, and the number of terms required to maintain a prescribed

degree of accuracy in the solution increases rapidly as 0(t) increases.

Therefore Eq (105) is only valid for the short range approximation of

the fractional derivative of the complex exponential function.
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To better understand the general behavior of the function, Eq (90),

it is necessary to develop an expression that can better portray the

over&a behavior of the function. The proces8 begins by taking the

Laplace transform of Eq (90)

[Da[ezt]] = sa'2(ezt ]  (107)

The Laplace transform of the exponential function is determined from

P[e zt]  fztet dt 1 (108)

0

Substitute Eq (108) into Eq (107) and the result is

+a__ ._ t 109)

To determine the fractional derivative of the complex exponential

function, one needs to calculate the inverse Laplace transform of Eq

(109). Following the definition of inverse Laplace transform integral

"1 [F(s)] 2 ( [F(s)] es t d (110)

the inverse transform of Eq (109) may be expressed as
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D a e t ] 
=13 e at.. 

s z 
do

t L 7-ZJ 27i =
iW

1-i j

and Eq (Il) can be evaluated using the residue theorem from the

calculus of complex variables. The closed contour of integration for

the inverse transform, in conjunction with the residue theorem, is shown

in Figure 1.

The integration contour has six segments and the direction of

integration is indicated by the arrows. Segments 3, 4, and 5 are

included in the contour because the branch cut of the function s is

taken along the negative real axis and the branch point of the same

function is taken at the origin of the a plane. The inverse transform,

Eq (111), is represented by segment 1 of the contour.

s -Plane +1m

2

+Re

Figure 1. Contour of Integration for Inverse Transform
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The residue theorem states that the integral along the contour,

divided by 2ni, in equal to the sua of the residues of the poles of the

integrand enclosed by the contour (22:865). By including the inverse

transform in the integration contour and applying the residue theorem

from complex calculus, the inverse transform, Eq (111), may be written

as

ds Z - eat da + 2 bj (112)

I-iW k=2 k J

where the first summation represents the sun of the integrals of the

other five segments and the second summation represent. the sum of the

residues. The residues, bj, are evaluated by conventional techniques

b= lim (s - X )[F(s)]e st (113)

provided the limit exists. Under the current analysis, there is one

pole at X = s and the residue of this pole enclosed by the contour is

b= lim (s-s } et = Zte (114)

It has been shown (5:95-99) that the integrals along segments 2, 4,

and 6 are equal to zero when the radii of 2 and 6 are increased

indefinitely and the radius of 4 is decreased indefinitely. The

integrals along segments 3 and 5 are not equal to zero and the sun of
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the integrals are not equal to zero either. The expression for the

inverse transform given by Eq (112) is now

( s*-. at d' A et ds+ze (115)

I-1i k=3,5 k

and the inverse transform is now the sum of the integrals along the

branch cut, segments 3 and 5, plus the residue. The sum of the

integrals can be determined as follow

Zff ~ (~~i)e~ ds
k=3,5 k

(re e (re rt)eK dr + f dr2F-i (reix -z) e (re ix-z)
00(-e'= -- rt

= ea - e- , -E j r ,e j dr

2i r +2izo

ae-rt
= 1i Ijfr z

= -sinaxK) r + z dr (116)

0

Applying the reflection formula of gamma function (27:256), where

f(z)r(1 - z) = -zF(-z)F(z) = X (117)

and Eq (116) can be written as
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S1 re~
eSt ds = ()r(1 -e ) 1 r dr (118)

ks3,5 k 0

Recalling the geometric series where

x xn + 1 + x 2 + (119)

n=O

Let x -r/z in Eq (119) and apply Watson's lemmas (30:21-24) to Eq (118)

2 eds 1 Z ta+n+l

k03,5 k n=O

Now substitute Eq (120) into Eq (115) and the fractional derivative of

the complex exponential function can be expressed as

DO[ezt z a zeZt + I(2_)F(I -a n+ , t 4 O (121)

Eq (121) is the asymptotic expansion representation of the sam function

in Eq (90). Redefine Eq (121) in terms of dimensionless time, 0(t),

defined in Eq (103), and Eq (121) can be written as

--V ~~~~ F)(1_a) a+n~l

Da[eae (t) a 3 a e 1e + 1' e(c+n+l) , t ® (122)
t ~ 1 64 I'(c)r(1 - o m ~~

4mO
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The general behavior of the fractional derivative may be

approximated as

~zt

OU[e t ]  z e

= a e 8  (123)

for the intermediate range of time and the summtion term represents the

remainder, Rn, of the approximation

R1 1 r(.+n+l)Rn = F()F( - 7) uz t an~l

1 _ _+n

=1 -T ) n 0z,.41 (124)
n-O 36

The remainder function R now decreases as 0(t) increases for this
n

function. Because the exponential term decays faster than the summation

term, the long range behavior of the function is influenced more by the

remainder term. The effect of the remainder is even more pronounced at

low frequency and in short time range. Thus Eq (123) provides only a

representation of the intermediate range behavior of the function under

investigation.

Given Eq (105) and Eq (123), one may proceed with the evaluation of

the approximation of fractional derivative of the generalized sinusoidal

function defined by Eq (91). Since z and z are complex conjugates, the

short range approximation of Eq (91) for system with zero initial

displacement can be written as
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Nt(n.a)

D e(eZ t] 2" Im(zn) t (125)
t 2r~n- a )

nuO

and the approximation in Eq (125) expressed in dimensionless time 1(t)

and normalized by 2a is

N

1 - Da [e zt + e Zt I M( 3 ( 1n6)
2 n t L1 +(n a 1))

nuO

In the same manner, the intermediate range approximation of Eq (91) can

be posed as

D eZt +eZt 2Im(zaeZt) (127)t

and the approximation of Eq (127) expressed in dimensionless time 9(t)

and normalized by 2Gi'u is

1 -a a Zt zt

Dte +e Im(f eve ) (128)

The normalied approximation of the short range and intermediate range

behavior for the fractional derivative of the response of an underdamped

system, Eq (126) and Eq (128) respectively, with a = 0.5, C = 0.1,

(I = it and N = 60 are illustrated in Figure 2. Notice that the

intermediate range approximation converges onto the exact behavior

expression in less than one cycle.
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Figure 2. Approximation of Fractional Derivative of
Generalized Sinusoidal Function

Based on the analsis just presented, one may conclude that the

system response represented by the intermediate range function is

a relatively accurate representation of the actual response of the

system studied, and the response is strongly influenced by the

residues of the poles of the system. This relationship forms the

basis of the fractional order state feedback control theory formulation

in Chapter III, where only the poles on the principal sheet of the

Riemann surface are retained for the development and formulation of the

state transformation matrix. Following this analysis, one may formulate

the fractional order state feedback control force input based on the
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system response and the eigenvaiues and eigenvectors associated with the

poles on the principal sheet of the Riemann surface alone, and still

maintain equivalent control authority as the traditional state feedback

control with fine control accuracy.
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V. Example Problems

To demonstrate the application of the fractional order feedback

control theory, the finite element analysis of two simple, controlled,

structures are presented in this section. The numerical solution of the

examples are computed using matrix manipulation routines in the program

PRO-MATLAB (26). The first example is a simple, hypothetical, two

degree-of-freedom spring-mass system undergoing longitudinal vibration.

Both active closed-loop feedback control and passive viscoelastic

damping coupled with active feedback control are examined in this

example. The second example is part of a structural control experiment

currently being developed at AFIT to demonstrate the applicability of

the fractional order state feedback control theory in controlling large

flexible space structures. The objective of this example is to develop

the optimal gain and state transformation matrices for the control of

the modified Advanced Beam Experiment (ABE) (25) using fractional order

state feedback.

Example Problem 1

In this first example, the application of fractional order state

feedback control theory in structural control will be demonstrated,

using numerical analysis of a hypothetical structure. The first part of

the example will illustrate the formulation of the expanded equations of

motion, the determination of the resonant frequencies and mode shapes,
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and the composition of the state transformation matrix for an open-loop

system.

2 K -- i K 2K N

L/4 L/2 L/4

1 2I' L

Figure 3. Free Vibrating 2 DOF System

Consider a two degree-of-freedom system, shown in Figure 3, in

longitudinal free vibration. The mass and stiffness matrices for the

system are defined as

[M] = [ 0 .5 0.5

[K] = : 6
1-2 6

The general form of the equations of motion for the homogeneous system

is

(MJ{;(t)) + [K]{w(t)} = {0) (129)

where (w(t)} is the displacement vector defined as
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{w(t) = { } (130)

The equations of motion for the system under free vibration may be posed

as

+ = (1 (131)0 0.5 2 -2 6 w

and the eigenvalues and eigenvectors of the open system can be

determined by the EIG command of PRO-MATLAB (26:3.35). These values

correspond to the first two modes of vibration. The natural frequencies

of the system are

: 2.8284

2 4.0000

and the mode shapes of the system are

The general problem can also be solved by first posing the

equations of motion in a fractional order format and solving the

fractional order equations using the solution technique of the expanded

equations of motion. Assuming a z 1/2 and applying Eq (25) in the
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equation formulation, Eq (129) may be written as

D 1/2 INIF 3/2 + D1/+D2/1 I o
- (NJ [D 32+ D' + D 111 w(t))

+ [KJD0{w(t)j = (F(t)j (132)

To solve for the eigenvaiues and eigenvectors of Eq (132), follow the

solution method of expanded equations of motion described in Eq (32)-Eq

(36) and arrange Eq (132) in the expanded format

1/2 _

D (NJ]wOt) + [K16w(t)) =(F(t)} - (133)

where

(0)1(01 (01 I

IN) 1 01 (01 IN] (0] (134)

(01 IN] (01 (0]

IN] (01 [01 (01

(01 [0J -(NJ (01

[KJ [ 01 -[NJ [0) [0] (135)

-[MJ (01 (0)1(01

[01 (01 (0] (K]
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3/2
Di (wlt)|

D I/{w(t)}
(w(t)) D D1 /2w(t) 1 (136)

(w(t)I

The eigenvalues and eigenvectors of the expanded equations can then be

solved using the EIG command of PRO-MATLAB and the eigenvalues are

) 1 = - 1.4142 * 1.4142i1.2

X 3 = - 1.1892 * 1.1892i

XS,6 = 1.4142 ± 1.4142i

X, = 1.1892 * 1.18921
7,9

The eigenvalues with positive real parts may be mapped onto the

1/2
principal sheet of the Riemann surface for the function, X = s J

consisting of two sheets (23:902). These eigenvalues and the

corresponding eigenvectors describe the sinusoidal motion of the

structure and form the basis for the development of the state

transformation matrix as described in Chapter III of this thesis. The

natural frequencies of the system can be determined by squaring the

fifth, sixth, seventh, and eighth eigenvalues. This process produces

two conjugate pairs

2 z 0.0000 ± 4.00001
5,6

X 0.0000 * 2.82841
7,5
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The imaginary parts of each conjugate pair correspond to a natural

frequency of the system. The zero in the real part indicates that no

damping is present in the structure.

The eigenvectors associated with the eigenvalues identifying

system resonant behavior (fifth, sixth, seventh, and eighth) also occur

in complex conjugate pairs. They may be posed as a modal matrix of the

form, Eq (39), and the modal matrix for the system is

[O =

1.0000 1.0000 1.0000 1.0000
-1.0000 -1.0000 1.0000 1.0000
0.3536 - 0.35361 0.3536 + 0.35361 0 4204 - 0.4204i 0.4204 + 0.4204i

-0.3536 + 0.35361 -0.3536 - 0.35361 0.4202 - 0.42021 0.4204 + 0.42041
0.0000 - 0.25001 0.0000 + 0.2500i 0.0000 - 0.35361 0.0000 + 0.35361
0.0000 + 0.2500i 0.0000 - 0.25001 0.0000 - 0.35361 0.0000 + 0.3536i

-0.0884 - 0.08841 -0.0884 + 0.08841 -0.1487 - 0.1487i -0.1487 + 0.1487i
0.0884 + 0.08841 0.0884 - 0.0884i -0.1487 - 0.1487i -0.1487 + 0.1487i

The seventh and eighth rows of the matrix represent the mode shape of

the system. The fifth and sixth rows are associated with the mode of

the D1/ 2 state. The third and fourth rows represent the mode of the D

state and the tirst and second rows represent the mode of the D3/2 state

of the system.

For this open system, the state equations can be written as

= Z AN(137)
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where

Y2 { (138)

w2

Recalling from the expansion theorem in structural modal analysis that

the state vector may be posed as the product of an associated modal

matrix and normal coordinates, the state vector in Eq (138) can be

written as

SA =(42)

where

[A)

-0.0884 - 0.08841 -0.0884 + 0.0884i -0.1487 - 0.14871 -0.1487 + 0.1487i
0.0884 + 0.08841 0.0884 - 0.0884i -0.1487 - 0.1487i -0.1487 + 0.1487i
0.3536 - 0.35361 0.3536 + 0.35361 0 4204 - 0.42041 0.4204 + 0.4204i
- 3 0.3536i -0.3536 - 0.3536i 0.4202 - 0.4202i 0.4204 + 0.4204i

for the present system. The row elements of [0a are those row elements

of (0] that correspond to the states of the state vector _. In a

similar manner, the fractional state vector may be written as

= [* Jf7|(44)
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For the application of one fractional state observer placed at m, X can

be defined as

I D3/2
D I lD1 w1
D1/ 2 wt (139)

wJ

and

1.0000 1.0000 1.0000 1.0000
0.3536 - 0.35361 0.3536 + 0.35361 0 4204 - 0.42041 0.4204 + 0.4204i
0.0000 - 0.2500i 0.0000 + 0.25001 0.0000 - 0.35361 0.0000 + 0.3536i

-0.0884 - 0.08841 -0.0884 + 0.08841 -0.1487 - 0.14871 -0.1487 + 0.1487i

for this system. Here the row elements of [0.] are those row elements

of (0] associated with the state elements identified in y.

To determine the state transformation matrix, 0, between the

traditional state vector and the fractional state vector, apply Eq (48)

and

.2 A log

=0 0 0 1

1.3017 -3.3889 4.3784 0.1716

0 1 0 0

4.3784 -22.9693 44.6249 -38.3410
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The state transformation matrix allows one to determine the overall

structural response by observing only the fractional and integer states

at m and this relationship can be illustrated as

(49)

Eq (49) can be defined for this example as

"3/2

liii D 1{/2 w1} (140)

w 2  w 5
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In the second part of this example, a control force is applied at

nt for the purpose of implementing feedback control to the system. The

system set up is shown in Figure 4.

U

/r2K c r-e 2K N

L/4 L/2 L/4 N

1 2

Figure 4. Feedback Controlled 2 DOF System

The equations of motion for the system are

(M](w(t)) + (K](w(t)} = [D]{u(t)} (141)

and

(D] = [1 0 (142)

The one entry on the diagonal indicates that the location of control

force is at m1* The state model of the equations of motion may be put in

the form

A = Ax + Ra (1)
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and the elements of the state model are defined in Eq (51), (52), (53),

and (54).

The optimal control for the system is determined by minimizing the

quadratic performance index

J = -LJ[x(t)TQX(t) + UT (t)Ru(t)ldt (143)

0

where

Q. a(K] [Ol (144)[ (01 IN]]

L[=100 0] (145)

Notice that the first term of the integral represents the total energy

of the system and the second integral term represents the control

energy. The optimal control for the system is

S-GX (7)

where G is the optimal control gain matrix and it is defined as

G = R-IB8 (4)

and S is the solution of the matrix Riccati equation. For the current
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system the optimal gain matrix is

G = [GI!G 2 I

0.0149 -0.0298 1 0.1412 0.0002
0 0 0 0

Only the first row of the gain matrix is populated because only one

control force is applied to the system.

Incorporating the optimal feedback control into the system, the

equations of motion may now be written in a homogeneous form

[MJ{w(t)) + [DI[0 2 ](w(t)} + ([KI + [DI[G1 ])(w(t)) = (01 (56)

The system response can be determined by first posing Eq (56) in the

fractional format and then solving the problem using the solution method

of the expanded equations of notion described in Eq (32)-Eq (36).

For a = 1/2, the fractional order equations of motion are

D1/2(m][D3/2 + D+ 1/  DO] w(t))

- IM[N [3/2 + D I + Dl/2](w(t)l

+ D1 2 [DIO2] [Dl/2 + DO](w(t})

- [DI[G2]D /(w(t)}

+ ([KI + [DI[G ])D°fw(t)l (0) (146)

and the expanded equations of motion are

60



D I[M1(w(t)1 + [K1{w(t)) (01 (147)

where

[01 [0] [01 [M]

[M] = [01 (01 [Ml [0] (148)

[01 [NJ [01 [DI[G2 1

[M] [01 [DJ[G 2 1 01

[0) [01 -[M] [01

[(] = [0] -[M) [01 [01 (149)

-[M] [01 -[D][G 21 [01

[01 [0] [0] [K]+(D][G 1]

D I {w(t))

D (w(t)(( t}= (136)
D (v(t)}

(w(t))

There are four pairs of complex conjugate eigenvalues to Eq (147)

and they are



X 1 = - 1.4018 * 1.4267i1.2

X = - 1.1745 ± 1.2041i3,4

= 1.4018 ± 1.4267i5,6

= 1.1745 ± 1.2041i7.8

The eigenvalues ).,6 and X7,8 correspond to the mode two and mode one

behaviors of the system. Squaring the eigenvalues generates the

respective frequencies for the modes

X = - 0.0706 ± 4.0000i
5,6 (150)
2  = - 0.0706 * 2.8284i

where the imaginary parts represent the frequencies of the feedback

controlled vibration, and the real parts represent the product of the

damping ratio and the natural frequencies of the undamped vibration.

Notice that damping has been introduced to the system through the

optimal feedback control, as evidenced by presence of nonzero real parts

of Eq (150).

The modal matrix of this system is formed by grouping the
eigenvectors associated with the eigenvalues X5,6 and X,8 in a

matrix form and
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1.0000 1.0000 1.0000 1.0000
-0.9817 + 0.13871 -0.9817 - 0.1387i 0.9890 + 0.0986i 0.9890 - 0.0986i
0.3504 - 0.3566i 0.3504 + 0.35661 0 4151 - 0.4256i 0.4151 + 0.4256i

-0.2945 + 0.3987i -0.2945 - 0.3987i 0.4525 - 0.3800i 0.4525 + 0.3800i
-0.0044 - 0.2499i -0.0044 + 0.2499i -0.0088 - 0.3533i -0.0088 + 0.3533i
0.0390 + 0.24471 0.0390 - 0.2447i 0.0261 - 0.3503i 0.0261 + 0.3503i

-0.0907 - 0.0860i -0.0907 + 0.0860i -0.1540 - 0.14291 -0.1540 + 0.1429i
0.1099 + 0.07181 0.1009 - 0.0718i -0.1382 - 0.1565i -0.1382 + 0.1565i

From the modal matrix, one may construct the modal matrices associated

with the traditional state vector and the fractional vector of the

system, in the same manner as indicated in the first part of this

problem. For the current feedback control scheme, the matrices

associated with the state vectors are

A

-0.0907 - 0.0860i -0.0907 + 0.0860i -0.1540 - 0.14291 -0.1540 + 0.1429i
0.1099 + 0.07181 0.1009 - 0.0718i -0.1382 - 0.15651 -0.1382 + 0.1565i

0.3504 - 0.35661 0.3504 + 0.3566i 0 4151 - 0.4256i 0.4151 + 0.4256i

and

SO ]

1.0000 1.0000 1.0000 1.0000[0.3504 - 0.35661 0.3504 + 0.35661 0 4151 - 0.42561 0.4151 + 0.425611
-0.0044 - 0.24991 -0.0044 + 0.24991 -0.0088 - 0.35331 -0.0088 + 0.3533i1
-0.0907 - 0.08601 -0.0907 + 0.08601 -0.1540 - 0.1429i -0.1540 + 0.14291]
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The state transformation matrix for the system is

= 0 0 0 1

1.2696 -3.2370 4.2724 0.1719

0 1 0 0

4.2675 -22.1595 42.8966 -37.4050

This state transformation matrix permits one to apply the

fractional order state feedback control law to this structure and the

control law is defined as

A x - BGf, (60)

where the fractional derivatives of the system response at m1 are fed

back as control input for controlling the structure. Defining the

fractional state gain matrix, 0*, as

G* GO (151)

the state equations for fractional order state feedback control can be

rewritten as

A - BG* (152)
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and

[0 .0371 0.2337 -0.1198 .0034

-0 0 0

The fractional state gain matrix, G*, permits the direct feedback of

fractional states for the control of the structure. The feedback

control force G y has the same control effect as the traditional state

feedback control force GA.
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In the last part of this example, a hypothetical viscoelastic

damping pad is introduced at a2 in addition to the control force at m,.

The system configuration is shown in Figure 5.

u% Damping Pad

/ I 2 K 2K I , N/\

/ L/4 L/2 L/4 NI IN

I 1 2

Figure 5. Viscoelastically-Damped 2 DOF System

The equations of motion for the system are now

[M]Iw(t)} + [Kv]fDw(t)} + [KE]{w(t)} = [D]{u(t)} (68)

where

0 0.1

(K J[ 0l

= [ 622

= 1/2

Before one may apply the optimal control theory, it is necessary to

develop the equivalent damping and equivalent stiffness matrices for the
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system such that the equations of motion may be posed in the integer

differential form as

[MJ(w(t)} + [C*J{w(t)) + (K*I{w(t)} = [D](u(t)} (69)

Following the procedure identified in Section 3.2, the modal

acceleration, velocity, and displacement matrices for the homogeneous

system may be determined by solving the fractional order equations of

otion of the system

D1/2[M][D3/2 + DI + D1 /2 + DO]fw(t))

- [M][D3/2 + D + DI/2]{w(t))

+ (Kv]D {w(t)} + [KE ID(w(t)} = 40) (153)

through the use of the solution technique of the expanded equations of

motion. The expanded equations of motion for Eq (153) are now

written as

1/2
D IM]{w(t)} + (K){w(t)} z 40) (154)

where

[01 [0] [01 IN

(M = (01 (01 [ [ (01 (155)

[01 [MI [0 [0]

(NJ [01 [01 (KV I
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[0] [0] -[IN] [0]

[K] = [0] -IN] [01 [0] (156)

-IM] [0] [0] [0]

(01 [0] [0] [K E]

and {W(t)j is defined by Eq (136). The modal acceleration, velocity,

and displacement matrices: [a 1, [0v], and [0d], are then determined

from the eigenvalues and the nodal matrix of the system posed in Eq

(154) and

1.4128 - 1.3219i 1.1894 + 1.19791

1.4141 + 1.4206i 1.1888 + 1.12771

-0.3274 + 0.35311 0.4174 - 0.4204i1
[v = 0.3520 - 0.35361 0.3928 - 0.42001

01] = 0.0883 + 0.08111 -0.1486 - 0.1454i 1
d -0.0884 - 0.08721 -0.1484 - 0.13681

Applying the above matrices to Eq (79) and (80), the equivalent damping

and equivalent stiffness matrices are found to be

= 0.0034 0.0387

[K'] F 6.0000 -2.0000 1
-2.0112 6.1317
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and the resonant frequencies of the viscoelastically damped system are

X 2 = - 0.0183 * 4.0177i
5,6 (157)
X 2 = - 0.0204 ± 2.8495i

7,8

By posing the equations of motion in the equivalent form, Eq (69),

the state equations can now be developed for determining the optimal

gain matrix for the feedback control of this viscoelastically damped

structure, following the same procedure identified in Section 3.2. The

gain matrix for the present control scheme is

G = [GIiGZJG CG 1 ;
0.0066 -0.0048 10.1076 -0.0029]

= 0 0 iO0

With the gain matrix determined, the optimal feedback control is

then introduced into the system and the equations of motion are now

(M]{w(t)) + ((C I + DI[G 2]){w(t))

+ ([K*] + [D][( 1])(w(t)) = (0) (84)

For a = 1/2, the fractional order equations of motion for Eq (84) can be

written as
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D1 2 [M]D 3/2 + D1 + D1/2 + DO]{w(t)

- I[DM3/2 + D+ D"21(w(t)}

+ D t2(C] + [D][G 2 D ' + DI(w(t)l

- ([C*I + [D][ 2 ])D1/2{w(t))

+ ([K*J + [D 1[G1 ])D°{w(t)} = {0I (158)

Eq (158) can be solved using the solution method of expanded equations

of motion described in Eq (32)-Eq (36) and the expanded equations of

motion for Eq (158) are

1/2
D [MfwM(t)} + = (0 (159)

where

[01 [01 [01 [MI]

[N] = [01 [01 [M [01 (160)

[01 [M [0] [C*]+[D][GI

[M] [01 [C*]+[D[G 2  [01

[01 [01 -[MI] [01

[1i a [01 -[MI] [01 [01 (161)

-[M] [0] -[C*]-[D][G 1 [01
2

[01 [0] [01 [K*]v[D][G I

and (w(t)} is defined by Eq (136). The response of the system can be

determined by solving the expanded equations of motion. There are four
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pairs of complex conjugate eigenvalues to Eq (159)

X 1 = - 1.4047 ± 1.4301i1,2

X = - 1.1781 ± 1.2093i

X = 1.4047 * 1.4301i
5,6

X 7, = 1.1781 * 1.2093i

The eigenvalues X5, 6 and X7.8 are associated with the nodal behaviors of

the system and the modal frequencies for the system are

Xz 2= - 0.0718 * 4.0177i
s,6 (162)

X 2 = - 0.0745 ± 2.84951
7,8

Notice that there is an increase in damping due to the incorporation of

optimal feedback control with passive viscoelastic damping. This is

evident by the increase in magnitude for the real parts of Eq (162)

compare with the real parts of Eq (157).

The nodal matrix for this system is formulated using the same

procedure as indicated the first part of this problem and

[$1 =

-0.9636 - 0.07261 -0.9636 + 0.07261 1.0000 1.0000

1.0000 1.0000 0.9688 + 0.04311 0.9688 - 0.0431i

-0.3627 + 0.31761 -0.3627 - 0.31761 0 4133 - 0.42431 0.4133 + 0.42431

0.3496 - 0.35591 0.3496 + 0.35591 0.4187 - 0.39321 0.4187 + 0.3932i

-0.0138 + 0.2401i -0.0138 - 0.24011 -0.0092 - 0.35071 -0.0092 + 0.3507i

-0.0044 - 0.24881 -0.0044 + 0.2488i 0.0062 - 0.34011 0.0062 + 0.34011

0.0806 + 0.08881 0.0806 - 0.08881 -0.1526 - 0.14111 -0.1526 + 0.1411i

-0.0901 - 0.08541 -0.0901 + 0.0854i -0.1417 - 0.14321 -0.1417 + 0.14321
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The modal matrices associated with the traditional state vector and the

fractional state vector can be formulated from the system modal matrix,

following the procedure described in the first part of this problem and

they are

(01=
10A[0.0806 + 0.0888i 0.0806 - 0.0888i -0.1526 - 0.1411i -0.1526 + 0.1411i
-0.0901 - 0.0854i -0.0901 + 0.0854i -0.1417 - 0.1432i -0.1417 + 0.1432i
-0.3627 + 0.3176i -0.3627 - 0.3176i 0 4133 - 0.4243i 0.4133 + 0.4243i
0.3496 - 0.3559i 0.3496 + 0.3559i 0.4187 - 0.3932i 0.4187 + 0.3932i

-0.9636 - 0.07261 -0.9636 + 0.07261 1.0000 1.0000
-0.3627 + 0.3176i -0.3627 - 0.31761 0 4133 - 0.42431 0.4133 + 0.4243i
-0.0138 + 0.2401i -0.0138 - 0.24011 -0.0092 - 0.35071 -0.0092 + 0.3507i
0.0806 + 0.0888i 0.0806 - 0.08881 -0.1526 - 0.14111 -0.1526 + 0.1411i

The state transformation matrix for the current system is

" [,A][ps)

=0 0 0 1

1.2821 -3.2777 4.2951 0.1951

0 1 0 0

4.2822 -22.5219 43.7790 -38.3175

This transformation matrix may now be introduced into the state

equations to incorporate the feedback of fractional order states, and
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the new state equations are

= - BG (152)

and

0.0186 0.1887 i-0.1476 0.1168
0 o

The formulation of the fractional state gain matrix permits the

direct application of fractional state feedback for the control of

structure that is viscoelastically damped. The control theory remains

unchanged from the undamped case to the viscoelastically damped case,

while the composition of the gain matrices are different due to the

variation in structural components.
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Example Problem 2

This example is part of an oigoing research effort here at AFIT to

demonstrate the application of fractional order state feedback control

theory in the active control of large flexible space structures. The

objective of this example is to develop the optimal gain matrix and the

state transformation matrix for implementing fractional order state

feedback control on the modified Advanced Beam Experiment (ABE).

The modified ABE consists of a six-foot beam, with the attached end

welded to the support structure and a circular mounting plate attached

to the free end of the beam (see Figure 6). The physical properties of

the structure is listed in Table 1. A complete description of the

modified ABE setup can be found in Reference (25). For the purpose of

this analysis, it is assumed that only the planar bending modes about

the Z-axis would be present in any response and no other bending or

torsional modes would be excited. A twenty two degree-of-freedom finite

element model of the inverted cantilever beam is developed for this

analysis. The circular plate is modeled as a point mass and a mass

moment of inertia combination at the free end of the beam. The attached

end connection of the beam Is modeled as a linear spring and a

rotational spring combination to better represent the flexible boundary

condition. The two-spring model of the attached end also tllows further

fine tuning of the ABE model to match the measured baseline

characteristics of the beam.
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Figure 6. ABE Structure Configuration
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Table 1. Structure Physical Properties

Material : Aluminum

Property Description Value Unit

Beam Length (L) 70.75 in

Y Cross-Section Width (a) 1.01 in

Z Cross-Section Width (b) 0.758 in

2
Cross-Section Area (A) 0.7656 in

Young's Modulus (E) 10.8 x 106 lbf/in'

Shear Modulus (G) 4.1 x 106 lbf/in 2

Beau Density (P) 2.591 x 10 4  lbf-sec2 /in4

Beam mass (m ) 1.403 x 10"2 lbf-sec /in

Y Moment of Inertia (I) 3.667 x 102 in4

y

Z Moment of Inertia (I) 6.508 x 10 in4
z

Torsional Moment of inertia (K) 7.913 x 102 in4

Polar Moment of Inertia (I 1.865 x 10-3  lbf-sec2 /in
mx

Plate Diameter (d) 12.0 in

Plate Thickness (t) 1.0 in

Plate Mass (a) 2.847 x 10 "  lbf-sec /inP

Plate X Mass Moment of Inertia (I~ )m 0.5125 lbf-sec 2*in

2
Plate Y-Z Mass Moment of Inertia (I ) 0.2562 lbf-sec *in
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The element stiffness matrix for the model is (27:391)

[12 6L -12L 6L

[K]= E1 6L 41 -6L 2L2  (163)
L -12L -6L 12 -6L

6L 21 -6L 4L2

and the element mass matrix is (27:392)

156 22L 54 -13L

EM, = pAL 22L 4L2  13L -3L2  (164)
420 54 13L 156 -22L

-13L -3L2 -22L 4L
2

The natural frequencies for the first two bending modes of the finite

element model are

12.355 rad/sec = 1.966 Hz

2= 147.24 rad/sec = 23.435 Hz

and they are in close agreement with the measured resonances of the

final ABE configuration (25:41)

= 1.97 Hz

os= 23.43 Hz

In this example, it is desired to apply the fractional order state

feedback control for controlling the first two bending modes of the
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beam. To begin the analysis of this problem, the bending motion of the

bean is measured with accelerometers at positions 2, 5, 8, and 11. With

traditional state feedback control, the translational displacements and

velocities at these four nodes are fed back to the controller at

position 5 to provide control force input for controlling the vibration

of the beam (see Figure 7). Since the structural control of the beam

is based on the modal response at the four nodal positions, it is

necessary to determine the optimal gain matrix based on these responses.

The equations of motion for the system can be expressed as

[M]fw(t)) + [KJw(t)} [D](u(t)) (165)

where

01y
I

(w(t)) = 6 (166)

Y 11

[M] and [K] are the mass and stiffness matrices of the finite element

model, and (w(t)l is a displacement vector that includes both

translational and angular displacements of the bean at the modes. The

product of [D] and [u(t)] represents the control force applied to the

system. In this case (D] is a 22 x 22 zero matrix except for an entry

of one at the matrix position D(9,9) to represent the control force

applied at nodal position 5 of the beam.
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Figure 7. ABE Configuration for Traditional State Feedback
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The analysis of the gain matrix begins with the formulation of the

state equations of the system with optimal control

A-4 - BG_4 (1C7)

where

4= 1{w(t)}} (168)

X is the state vector of the system with 44 states, that includes both

displacement and velocity at all degrees of freedom. [A] and [B] are

constant matrices defined by Eq (53) and (54). G is the optimal gain

matrix for the present system with full state feedback control, and it

is derived from the solution of the Riccati equation. For the quadratic

performance index

= Jrx(t)TQX(t) + UT (t)Ru(t)]dt (169)

0

where

r[K] [0]]

R= (170)
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the optimal gain matrix, G, for full state feedback is a 22 x 44 matrix

with one row of gain elements at row 9 and no entries at other rows.

This corresponds to the full state feedback control setup with one

control force applied in the direction of the translational displacement

at node 5 of the beau. The gain elements at row 9 of the full state

feedback gain matrix are

G(9,1:44) =

columns 1 through 8

[ 0.3374 -2.7632 -0.6534 0.5310 -0.9246 -0.4154 -3.9616 -8.0019

columns 10 through 16

9.6753 1.1421 -2.4241 8.3482 -0.4293 4.1572 0.9121 7.4925

columns 19 through 24

-3.9078 -2.4949 0.2251 0.4790 1.3739 -2.6400 0.0122 -0.0046

columns 28 through 32

-0.0087 -0.0028 -0.0096 0.0011 -0.0103 -0.0111 0.1595 0.0207

columns 37 through 40

0.0298 0.0058 0.0119 0.0075 0.0189 0.0367 -0.0413 -0.0406

columns 41 through 44

-0.0086 0.0255 0.2232 0.13071

Formulating the gain matrix G = [G11G2 ] and apply the feedback control

to the system, the equations of motion of the bean may now be written as

[+]{w(t)+ [D][G 2]{w(t)) + ([K] + [DJ[G 1]){w(t)) = {01 (56)
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The system response of the full state feedback controlled beau can be

determined by solving Eq (56) in first order form

D [tM]{(t)| + [K]{w(t)) (01 (172)

where

[ z] = [ 0 [D][G ] (173)

IM] [D01z

[ (0 [ [0] ] (174)

(W(t)} ID I{w(t) (175)

and the frequencies for the first four modes of vibration are

= - 0.9725 ± 12.3551

= - 7.1178 * 147.24iz (176)

0= - 5.0212 * 381.561

W - 3.4060 * 638.531

The damping effect introduced by the feedback control are evident as

shown by the negative real parts of the system responses.

Since, for this analysis, the motion of the beau is only

represented by the translational displacements and velocities at the
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nodal positions 2, 5, 8, and 11, the application of full state feedback

control using the complete 44 states of the system is not very

practical. It is desirable to develop an equivalent control force that

has the same effect as the full state feedback control while using a

reduced set of states, xR' and -e is defined in this case as

Y2
Ys

ye

Y11
RI Y2  (177)

Y5YS

ye

Y11

It can be shown that there exists a relation between the full state

vector, _, and the reduced-state vector, 4,, through a state reduction

transformation matrix, (0 1.

Recalling from structural modal analysis that the system response

may be expressed an a product of the modal matrix and the modal

coordinate vector. Express the full state vector, X, and the reduced

state vector, X., in terms of the their respective modal matrix and the

modal coordinates

= 1(178)

= W101'1} (179)

where W'] and [W'] are the associated modal matrices for X and .R'
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respectively. The row elements of ['] and ["] are those row elements

of the full modal matrix, [*], of the full state feedback control systes

in Eq (172) associated with the states in X and X The full modal

matrix, [$], is a square matrix consist of conjugate eigenvectors of the

system in Eq (172). It is desired for the eqiivalent control force to

produce the same control effect over the first four modes of vibration

as the full state feedback control force, thus only those eigenvectors

of the full modal matrix, [$], th&t are associated with the first four

modes are used in the formulaticn of [W'] and [*'], where [W"] is a

44 x 8 matrix and [4"] is a 8 x 8 matrix. From Eq (179) one may define

{ri} as

=n [ 1"]-'1 X (180)

Substitute Eq (180) into Eq (178) yields

-X NR(181)

Defining the state reduction transformation matrix, (Re], as

[4] [4[(182)

and Eq (181) may be posed as

= [*els (183)
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and Eq (183) illustrates the relation between the full state vector and

the reduced state vector for the first four modes of vibration.

Substitute Eq (183) into Eq(167) and the state equations can be

written as

• = AX - BG[R I]R (184)

Define the reduced gain matrix as

GR = G[ R 1 (185)

and Eq (184) can be written as

Ax - RBe e  (186)

where G. is a 22 x 8 matrix with one row of gain elements at row 9. Eq

(186) is the state equations with an equivalent control force being

applied in the translational direction at nodal position 5, and the

equivalent control force is developed based on the states of the reduced

state vector defined in Eq (177). The gain elements at row 9 of the

reduced gain matrix of Eq (185) are

Ge(9,1:8) =

columns 1 through 8

E-1.1477 2.4025 -1.6402 0.4945 -0.0482 0.2196 -0.0371 0.22241
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and the gain elements represent the gains to be applied to the states of

the reduced state vector in Eq (177) for generating an equivalent

control force for controlling the first four modes of vibration.

To introduce the gains for the reduced state vector into the state

equations, Eq (167), one simply expands G. coluanwise by incorporating

zero column vectors into those columns that correspond to the states of

the full state vector not considered for the feedback, This expansion

process results in a gain matrix, GRE' with the same gain elements from

the reduced gain matrix expanded across row 9 of the matrix GRE. The

gain elements at row 9 of the matrix GRE are

GE (9,1:44) =

columns 1 through 8

[ 0.0 0.0 -1.1477 0.0 0.0 0.0 0.0 0.0

columns 9 through 16

2.4025 0.0 0.0 0.0 0.0 0.0 -1.6402 0.0

columns 17 through 24

0.0 0.0 0.0 0.0 0.4945 0.0 0.0 0.0

columns 25 through 32

-0.0482 0.0 0.0 0.0 0.0 0.0 0.2196 0.0

columns 33 through 40

0.0 0.0 0.0 0.0 -0.0371 0.0 0.0 0.0

columns 41 through 44

0.0 0.0 0.2224 0.0 ]
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The state equations for the system with reduced state feedback is

A z - GREX (187)

and the product of GREX has the same control effect on the first four
modes as GR X. Formulate the new gain matrix as GRE = [G lG ], the

R R RE REV RE2

equations of motion for the system with reduced feedback control can be

written as

[M]{w(t)) + [D][G RE2]w(t)} + ([K] + [D](G RE]){w(t)} = 101 (188)

The system response may be determined by solving the expanded equations

of motion using the procedure identified in Eq (172)-(175), and the

frequencies for the first four modes of vibration are

= - 0.9725 * 12.355i

= - 7.1178 * 147.24i (189)

W 3 = - 5.0212 ± 381.561

W 4 = - 3.4060 ± 638.53i

Notice that the frequencies for the first four modes in Eq (189), using

the reduced state feedback control, are identical to the response of the

full state feedback control in Eq (176).

At this point of the analysis, it is desired to introduce

fractional order state feedback control in place of the reduced state

feedback control. The accelerometers at positions 2, 5, 8, and 11 are
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replaced by two accelerometers at positions 5 and 8, plus the associated

electronic fractional order differentiator circuits of order a = 1/2

The fractional derivatives of the translational displacements at these

two nodes, together with their displacements and velocities, are fed

back to the controller to provide control force input for controlling

the structure (see Figure 8). The application of the fractional order

state feedback control theory in this example will reduce the sensor

requirement from four to two, while still maintaining the same control

authority over the system as the traditional state feedback control.

To introduce fractional order state feedback control to the beam,

one needs to solve the fractional order equations of motion of the

system in the expanded format and formulate the state transformation

matrix following the procedure identified in Eq (32)-Eq (48). For

a = 1/2, the fractional order equations of motion of Eq (188) are

D /2(M [D3/2 + D I + D1 /2 + DO (w(t))D- [ [1 [DI D
-[IM][D3/2 + D I + D1/2 I Wt))

+ D/ 2 [D][GRE2][D1/2 + Do]fw(t)1

- [DI[GRE2 ]D/{w(t)}

+ ([K] + [D][GREI])D°fw(t)} = (0) (190)

and Eq (190) can be solved using the solution method of the expanded

equations of motion described in Eq (32)-Eq (36). The expanded

equations of motion for Eq (190) are

1/2
D [M{w(t)} + [K](w(t)} = (01 (191)
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Figure 8. ABE Configuration for Fractional State Feedback
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where

(0[] [01 [0] [M

[M] = [01 [01 [MI] [0] (192)

(01 IM] [0] [D][GREz2]

[M] [0] [D][GRE2 ] [01

[0] [01 -[I [0]

[K] [ 0] -[M] [01 [01 (193)

-[Ml [01 -[Di[GREZ] [01

[01 (01 [01 [K]+[D][GREI]

D3/2{w(t))

D I  {(t))
{w(t)} D 1 / 2 w(t)I (194)

{w(t)}

and {w(t)) for this system is defined in Eq (166). The modal matrix of

the system, [$), is composed of the complex conjugate pairs of

eigenvectors associated with the conjugate eigenvalues on the principal

sheet of the Riemann surface. Since only the first four modes of

vibration are controlled by the equivalent control force, only the

eigenvectors correspond to the first four modes of vibration will be

used in formulating [1 and the resulting matrix is 88 x 8. It is

desired to determine the state transformation matrix, #, for the

application of feeding back the fractional states of responses at nodal
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positions 5 and 8. Invoke the expansion theorem and the full state

vector may be written as

= A r? (195)

for

f Mw(t)} (196)
fw(t)ll

[OA] = a 44 x 8 matrix consist of row vectors of [€] associated

with the states of the full state vector x

The fractional state vector may be written in the form

Y= [O ]{ ) (197)

for

D31 2  y5
ye

DI Y (198)ye

D 12y5
ye

y56
ye

[@Js] =a 8 x 8 matrix consist of row vectors of [0]associated

with the states of the fractional state vector 1
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The state transformation matrix, 4, is defined as

(199)

and the full state vector can be defined as

- = Ox (200)

Substituting Eq (200) into the state equations for reduced state

feedback, Eq (187) and

=A - BGRE#Z (201)

Redefine the gain matrix for Eq (201) as

G = # (202)
RE RE

and substitute Eq (202) into Eq (201) then

s = - DGRZ (203)

Eq (203) is the state equations for the feedback of reduced fractional

order state control, where G* is a 22 x 8 matrix with one row of gain
RE

elements at row 9. The gain element at row 9 of G' are
RE
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G* (9,1:8) =

RE

columns 1 through 8

[-0.0226 0.0177 1.1198 -0.5565 -15.9949 9.6436 100.1118 -49.10841

This gain matrix permits the fractional states from positions 5 and 8 to

be fed back for the controlling of the first four vibrational modes of

the structure.

TheoL tically, the the control effect provided the product of the

gain matrix G* RE and the fractional states observed at positions 5 and 8

for controlling the first four modes of vibration of the beau is

equivalent to the control effect provided by the product of the gain

matrix GRE and the traditional states observed at positions 2, 5, 8, and

11. But physically only the first two modes of vibration of the beam

can be accurately controlled by this control system. This is due to the

limitation of the finite element model of the beam, of which only the

first two modes of vibration can be modeled with relative accuracy.

The next step in this experiment is to incorporate the gain matrix

GRE to the fractional order state feedback control of the beau and

physically demonstrate the validity of the control theory. This

validation process is currently underway at AFIT and the results of this

experiment will become available in the near future.
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VI. Conclusion

The fractional order state feedback control theory is developed by

incorporating the state transformation matrix into the traditional

state-space equations of the structure under control. The state

transformation matrix between the traditional states and the fractional

states can be formulated by establishing the associated modal matrices

from the eigenstructures of the expanded equations of motion of the

system. The optimal control gains are determined by solving the Riccati

equation for the linear quadratic regular problem. The gains are then

combined with the state transformation matrix to form the necessary

fractional state gains for the fractional order state feedback control

for the system.

The use of fractional order state feedback control appears to hold

value in providing an alternative form of an observer which permits one

to use fewer sensors at limited locations, while still be able to

provide the equivalent observability and control authority over the

structure as the traditional state feedback control scheme.

The next step in the development of fractional order state feedback

control is to test the theory by experiment. The current research

effort-on the modified ABE and the development of a prototype sensor for

fractional derivative motion should provide insight on the application

of the theory in real-time control situation. Additional research

efforts are still needed in determining the optimal number of sensors

required, the optimal sensor/controller locations on the structure being

controlled, and the optimal fractional states for feedback structural
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control in order to further expand the application of the theory.

Furthermore, advanced electronic fractional order differentiator

circuitries are needed to advance the development and performance of the

fractional order state control system.
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